Capacitive-Gap MEMS Resonator-Based Oscillator Systems for Low-Power Signal Processing

Download Capacitive-Gap MEMS Resonator-Based Oscillator Systems for Low-Power Signal Processing PDF Online Free

Author :
Release : 2015
Genre :
Kind :
Book Rating : /5 ( reviews)

Capacitive-Gap MEMS Resonator-Based Oscillator Systems for Low-Power Signal Processing - read free eBook in online reader or directly download on the web page. Select files or add your book in reader. Download and read online ebook Capacitive-Gap MEMS Resonator-Based Oscillator Systems for Low-Power Signal Processing write by Thura Lin Naing. This book was released on 2015. Capacitive-Gap MEMS Resonator-Based Oscillator Systems for Low-Power Signal Processing available in PDF, EPUB and Kindle. Wireless technology, which already plays a major part in our daily lives, is expected to further expand to networks of billions of autonomous sensors in coming years: the so-called Internet of Things. In one vision, sensors employing low-cost, low-power wireless motes collect and transmit data through a mesh network while operating only on scavenged or battery power. RF MEMS provides one approach to the stringent power and performance required by sensor networks. This dissertation presents improvement to these MEMS technologies and introduces new approaches for wireless communication in low power wireless networks. First, this work presents oscillators based on the capacitive-gap transduced MEMS resonator. As wireless radio needs at least one such oscillator, the space and power savings offered by these MEMS oscillators make them compelling alternatives over bulky quartz-based devices. The high quality factors (Q) > 100,000 possible in these on-chip resonators allow for phase noise performance of the oscillator exceeding even the challenging GSM specifications using less than 100 uW of power consumption. Despite their small size and tiny capacitive gaps, MEMS-based oscillators are found to be insensitive to vibration and achieve only a few ppm shift in frequency over 10 months of measurement: the performance shown is on par or better than the off-the-shelf crystal oscillators. Interestingly, exploiting nonlinearities in the MEMS resonators also allows multiple simultaneous oscillation frequencies using one amplifier. Combined with electrical stiffness-based frequency tuning, this enables Frequency-Shift Keyed modulation of the output waveform, offering a space and power-efficient multichannel transmitter, as desired for mobile applications requiring long battery life. Intrinsically, oscillator systems involve positive feedback loops, which regeneratively amplify signals in the loop. Taking advantage of this property, MEMS oscillator systems may be used for other wireless signal processing applications. This dissertation explores such systems applied to: 1) a narrow channel-select filter with low insertion loss unachievable using passive resonators only and 2) a super-regenerative amplification-based channel-selecting radio transceiver. Finally, this dissertation presents two capacitive-gap transduced micromechanical resonator designs which can achieve the high Q at GHz frequencies needed for many wireless communication standards. The methods and solutions provided here pave a path towards realization of future low-power wireless technologies.

Frequency Tunable MEMS-Based Timing Oscillators and Narrowband Filters

Download Frequency Tunable MEMS-Based Timing Oscillators and Narrowband Filters PDF Online Free

Author :
Release : 2015
Genre :
Kind :
Book Rating : /5 ( reviews)

Frequency Tunable MEMS-Based Timing Oscillators and Narrowband Filters - read free eBook in online reader or directly download on the web page. Select files or add your book in reader. Download and read online ebook Frequency Tunable MEMS-Based Timing Oscillators and Narrowband Filters write by Henry Galahad Barrow. This book was released on 2015. Frequency Tunable MEMS-Based Timing Oscillators and Narrowband Filters available in PDF, EPUB and Kindle. There is little question that the commercial success of smartphones has substantially increased the volume of products utilizing Micro Electro Mechanical Systems (MEMS) technology, especially accelerometers, gyroscopes, bandpass filters, and microphones. The Internet of Things (IoT), a more recent driver for small, low power microsystems, seems poised to provide an even bigger market for these and other potential products based on MEMS. Given that the IoT will likely depend heavily on massive sensor networks using nodes for which battery replacement might not be practical, cost and power consumption become even more important. As already known for existing sensor networks, sleep/wake cycles will likely be instrumental to maintaining low sensor node power consumption in the IoT, and if so, then the clocks that must continuously run to synchronize sleep/wake events often become the bottlenecks to ultimate power consumption. On the communications side, narrowband RF channel-selecting front-end filters stand to greatly reduce receive power consumption by relaxing transistor circuit dynamic ranges. Both the accuracy of the clocks and ability of filters to achieve bandwidths small enough to select individual channels depend heavily on the accuracy and precision to which the frequency-setting devices they rely on are constructed. Inevitably, fabrication tolerances are finite, which means the ability to attain the highest performance relies on trimming or tuning. This dissertation focuses on methods by which voltage-controlled frequency tuning of capacitively-transduced micromechanical resonators make possible 1) an ultra-compact, low-power 32.768-kHz micromechanical clock oscillator; and 2) a high-order, small percent bandwidth coupled-resonator filter with minimal passband distortion. Currently, quartz crystal-based oscillators at 32.768 kHz dominate the market because they offer the best combination of cost and performance. However, the physical dimensions of these oscillators are presently too large for future small form-factor electronic applications, such as ones that fit within credit cards. While there have been attempts to shrink quartz resonating elements, the increasingly difficult fabrication steps required to produce such devices raises manufacturing costs, thereby preventing widespread adoption (so far). In addition, quartz crystal motional resistance values typically increase as resonator dimensions shrink, which in many oscillator configurations raises power consumption. Unlike common quartz resonators, properly designed MEMS resonators benefit greatly from scaling in that reductions in lateral dimensions lead to a rapid decrease in motional resistance by a square law. The work described herein harnesses these scaling advantages to realize an oscillator much smaller than quartz-based oscillators with potential for much less power consumption. Specifically, this work uses aggressive lithography to achieve a capacitive-comb transduced micromechanical resonator occupying only 0.0154 mm2 of die area. Wire bonding this resonator to a custom sustaining amplifier and a supply voltage of only 1.65V then realizes a 32.768-kHz real-time clock oscillator more than 100× smaller by area than miniaturized quartz crystal implementations and at least 4× smaller than other MEMS-based approaches. The use of voltage-controlled tuning Oscillations sustains with only 2.1 [mu]W of power consumption. On the filter front, whether realized using quartz, FBAR, or capacitive-gap transduced MEMS resonator, mechanical filter responses are only as flat as the accuracy of their constituent resonator center frequencies. While narrowband micromechanical filters comprised of up to three mechanically coupled resonators have been demonstrated in the past, there exists a demand for bandpass filters with even sharper roll-offs and larger stopband rejections, and this requires higher order filters utilizing more than three coupled resonators. The work herein demonstrates filters comprised of four coupled resonators with bandwidths narrow enough to select individual channels. Before correction, filter passbands fresh out of the fab look nothing like their intended responses. Application of the automated passband correction protocol of this work, based on voltage-controlled frequency tuning, permits measurement of a 4-resonator micromechanical filter with a 0.1% bandwidth commensurate with the needs of channel-selection (albeit at a low frequency) and an impressive 20-dB shape factor of 1.59, all with less than 3dB of additional passband ripple (beyond the design ripple).

Discrete Oscillator Design

Download Discrete Oscillator Design PDF Online Free

Author :
Release : 2014-05-14
Genre : Technology & Engineering
Kind :
Book Rating : 484/5 ( reviews)

Discrete Oscillator Design - read free eBook in online reader or directly download on the web page. Select files or add your book in reader. Download and read online ebook Discrete Oscillator Design write by Randall W. Rhea. This book was released on 2014-05-14. Discrete Oscillator Design available in PDF, EPUB and Kindle. Oscillators are an essential part of all spread spectrum, RF, and wireless systems, and todayOCOs engineers in the field need to have a firm grasp on how they are designed. Presenting an easy-to-understand, unified view of the subject, this authoritative resource covers the practical design of high-frequency oscillators with lumped, distributed, dielectric and piezoelectric resonators. Including numerous examples, the book details important linear, nonlinear harmonic balance, transient and noise analysis techniques. Moreover, the book shows you how to apply these techniques to a wide range of oscillators. You gain the knowledge needed to create unique designs that elegantly match your specification needs. Over 360 illustrations and more than 330 equations support key topics throughout the book.

Low-Power Crystal and MEMS Oscillators

Download Low-Power Crystal and MEMS Oscillators PDF Online Free

Author :
Release : 2012-10-13
Genre : Technology & Engineering
Kind :
Book Rating : 077/5 ( reviews)

Low-Power Crystal and MEMS Oscillators - read free eBook in online reader or directly download on the web page. Select files or add your book in reader. Download and read online ebook Low-Power Crystal and MEMS Oscillators write by Eric Vittoz. This book was released on 2012-10-13. Low-Power Crystal and MEMS Oscillators available in PDF, EPUB and Kindle. Electronic oscillators using an electromechanical device as a frequency reference are irreplaceable components of systems-on-chip for time-keeping, carrier frequency generation and digital clock generation. With their excellent frequency stability and very large quality factor Q, quartz crystal resonators have been the dominant solution for more than 70 years. But new possibilities are now offered by micro-electro-mechanical (MEM) resonators, that have a qualitatively identical equivalent electrical circuit. Low-Power Crystal and MEMS Oscillators concentrates on the analysis and design of the most important schemes of integrated oscillator circuits. It explains how these circuits can be optimized by best exploiting the very high Q of the resonator to achieve the minimum power consumption compatible with the requirements on frequency stability and phase noise. The author has 40 years of experience in designing very low-power, high-performance quartz oscillators for watches and other battery operated systems and has accumulated most of the material during this period. Some additional original material related to phase noise has been added. The explanations are mainly supported by analytical developments, whereas computer simulation is limited to numerical examples. The main part is dedicated to the most important Pierce circuit, with a full design procedure illustrated by examples. Symmetrical circuits that became popular for modern telecommunication systems are analyzed in a last chapter.

MEMS Sensors and Resonators

Download MEMS Sensors and Resonators PDF Online Free

Author :
Release : 2020-05-27
Genre : Technology & Engineering
Kind :
Book Rating : 652/5 ( reviews)

MEMS Sensors and Resonators - read free eBook in online reader or directly download on the web page. Select files or add your book in reader. Download and read online ebook MEMS Sensors and Resonators write by Frederic Nabki. This book was released on 2020-05-27. MEMS Sensors and Resonators available in PDF, EPUB and Kindle. Microelectromechanical systems (MEMS) have had a profound impact on a wide range of applications. The degree of miniaturization made possible by MEMS technology has significantly improved the functionalities of many systems, and the performance of MEMS has steadily improved as its uses augment. Notably, MEMS sensors have been prevalent in motion sensing applications for decades, and the sensing mechanisms leveraged by MEMS have been continuously extended to applications spanning the detection of gases, magnetic fields, electromagnetic radiation, and more. In parallel, MEMS resonators have become an emerging field of MEMS and affected subfields such as electronic timing and filtering, and energy harvesting. They have, in addition, enabled a wide range of resonant sensors. For many years now, MEMS have been the basis of various industrial successes, often building on novel academic research. Accordingly, this Special Issue explores many research innovations in MEMS sensors and resonators, from biomedical applications to energy harvesting, gas sensing, resonant sensing, and timing.