Code Representation and Performance of Graph-Based Decoding

Download Code Representation and Performance of Graph-Based Decoding PDF Online Free

Author :
Release : 2008
Genre :
Kind :
Book Rating : /5 ( reviews)

Code Representation and Performance of Graph-Based Decoding - read free eBook in online reader or directly download on the web page. Select files or add your book in reader. Download and read online ebook Code Representation and Performance of Graph-Based Decoding write by Junsheng Han. This book was released on 2008. Code Representation and Performance of Graph-Based Decoding available in PDF, EPUB and Kindle. Key to the success of modern error correcting codes is the effectiveness of message-passing iterative decoding (MPID). Unlike maximum-likelihood (ML) decoding, the performance of MPID depends not only on the code, but on how the code is represented. In particular, the performance of MPID is potentially improved by using a redundant representation. We focus on Tanner graphs and study combinatorial structures therein that help explain the performance disparity among different representations of the same code. Emphasis is placed on the complexity-performance tradeoff, as more and more check nodes are allowed in the graph. Our discussion applies to MPID as well as linear programming decoding (LPD), which we collectively refer to as graph-based decoding. On an erasure channel, it is well-known that the performance of MPID or LPD is determined by stopping sets. Following Schwartz and Vardy, we define the stopping redundancy as the smallest number of check nodes in a Tanner graph such that smallest size of a non-empty stopping set is equal to the minimum Hamming distance of the code. Roughly speaking, stopping redundancy measures the complexity requirement (in number of check nodes) for MPID of a redundant graph representation to achieve performance comparable to ML decoding (up to a constant factor for small channel erasure probability). General upper bounds on stopping redundancy are obtained. One of our main contribution is a new upper bound based on probabilistic analysis, which is shown to be by far the strongest. From this bound, it can be shown, for example, that for a fixed minimum distance, the stopping redundancy grows just linearly with the redundancy (codimension). Specific results on the stopping redundancy of Golay and Reed-Muller codes are also obtained. We show that the stopping redundancy of maximum distance separable (MDS) codes is bounded in between a Turan number and a single-exclusion (SE) number --- a purely combinatorial quantity that we introduce. By studying upper bounds on the SE number, new results on the stopping redundancy of MDS codes are obtained. Schwartz and Vardy conjecture that the stopping redundancy of an MDS code should only depend on its length and minimum distance. Our results provide partial confirmation, both exact and asymptotic, to this conjecture. Stopping redundancy can be large for some codes. We observe that significantly fewer checks are needed if a small number of small stopping sets are allowed. These small stopping sets can then be dealt with by ``guessing'' during the iterative decoding process. Correspondingly, the guess-g stopping redundancy is defined and it is shown that the savings in number of required check nodes are potentially significant. Another theoretically interesting question is when MPID of a Tanner graph achieves the same word error rate an ML decoder. This prompts us to define and study ML redundancy. Applicability and possible extensions of the current work to a non-erasure channel are discussed. A framework based on pseudo-codewords is considered and shown to be relevant. However, it is also observed that the polytope characterization of pseudo-codewords is not complete enough to be an accurate indicator of MPID performance. Finally, in a separate piece of work, the probability of undetected error (PUE) for over-extended Reed-Solomon codes is studied through the weight distribution bounds of the code. The resulting PUE expressions are shown to be tight in a well-defined sense.

Cryptography and Coding

Download Cryptography and Coding PDF Online Free

Author :
Release : 2003-07-31
Genre : Computers
Kind :
Book Rating : 657/5 ( reviews)

Cryptography and Coding - read free eBook in online reader or directly download on the web page. Select files or add your book in reader. Download and read online ebook Cryptography and Coding write by Michael Walker. This book was released on 2003-07-31. Cryptography and Coding available in PDF, EPUB and Kindle.

Optimizing and Decoding LDPC Codes with Graph-based Techniques

Download Optimizing and Decoding LDPC Codes with Graph-based Techniques PDF Online Free

Author :
Release : 2010
Genre :
Kind :
Book Rating : 071/5 ( reviews)

Optimizing and Decoding LDPC Codes with Graph-based Techniques - read free eBook in online reader or directly download on the web page. Select files or add your book in reader. Download and read online ebook Optimizing and Decoding LDPC Codes with Graph-based Techniques write by Amir H. Djahanshahi. This book was released on 2010. Optimizing and Decoding LDPC Codes with Graph-based Techniques available in PDF, EPUB and Kindle. Low-density parity-check (LDPC) codes have been known for their outstanding error-correction capabilities. With low-complexity decoding algorithms and a near capacity performance, these codes are among the most promising forward error correction schemes. LDPC decoding algorithms are generally sub-optimal and their performance not only depends on the codes, but also on many other factors, such as the code representation. In particular, a given non-binary code can be associated with a number of different field or ring image codes. Additionally, each LDPC code can be described with many different Tanner graphs. Each of these different images and graphs can possibly lead to a different performance when used with iterative decoding algorithms. Consequently, in this dissertation we try to find better representations, i.e., graphs and images, for LDPC codes. We take the first step by analyzing LDPC codes over multiple-input single-output (MISO) channels. In an n_T by 1 MISO system with a modulation of alphabet size 2^M, each group of n_T transmitted symbols are combined and produce one received symbol at the receiver. As a result, we consider the LDPC-coded MISO system as an LDPC code over a 2^{M n_T}-ary alphabet. We introduce a modified Tanner graph to represent MISO-LDPC systems and merge the MISO symbol detection and binary LDPC decoding steps into a single message passing decoding algorithm. We present an efficient implementation for belief propagation decoding that significantly reduces the decoding complexity. With numerical simulations, we show that belief propagation decoding over modified graphs outperforms the conventional decoding algorithm for short length LDPC codes over unknown channels. Subsequently, we continue by studying images of non-binary LDPC codes. The high complexity of belief propagation decoding has been proven to be a detrimental factor for these codes. Thereby, we suggest employing lower complexity decoding algorithms over image codes instead. We introduce three classes of binary image codes for a given non-binary code, namely: basic, mixed, and extended binary image codes. We establish upper and lower bounds on the minimum distance of these binary image codes, and present two techniques to find binary image codes with better performance under belief propagation decoding algorithm. In particular, we present a greedy algorithm to find optimized binary image codes. We then proceed by investigation of the ring image codes. Specifically, we introduce matrix-ring-image codes for a given non-binary code. We derive a belief propagation decoding algorithm for these codes, and with numerical simulations, we demonstrate that the low-complexity belief propagation decoding of optimized image codes has a performance very close to the high complexity BP decoding of the original non-binary code. Finally, in a separate study, we investigate the performance of iterative decoders over binary erasure channels. In particular, we present a novel approach to evaluate the inherent unequal error protection properties of irregular LDPC codes over binary erasure channels. Exploiting the finite length scaling methodology, that has been used to study the average bit error rate of finite-length LDPC codes, we introduce a scaling approach to approximate the bit erasure rates in the waterfall region of variable nodes with different degrees. Comparing the bit erasure rates obtained from Monte Carlo simulation with the proposed scaling approximations, we demonstrate that the scaling approach provides a close approximation for a wide range of code lengths. In view of the complexity associated with the numerical evaluation of the scaling approximation, we also derive simpler upper and lower bounds and demonstrate through numerical simulations that these bounds are very close to the scaling approximation.

Graph Representation Learning

Download Graph Representation Learning PDF Online Free

Author :
Release : 2022-06-01
Genre : Computers
Kind :
Book Rating : 886/5 ( reviews)

Graph Representation Learning - read free eBook in online reader or directly download on the web page. Select files or add your book in reader. Download and read online ebook Graph Representation Learning write by William L. William L. Hamilton. This book was released on 2022-06-01. Graph Representation Learning available in PDF, EPUB and Kindle. Graph-structured data is ubiquitous throughout the natural and social sciences, from telecommunication networks to quantum chemistry. Building relational inductive biases into deep learning architectures is crucial for creating systems that can learn, reason, and generalize from this kind of data. Recent years have seen a surge in research on graph representation learning, including techniques for deep graph embeddings, generalizations of convolutional neural networks to graph-structured data, and neural message-passing approaches inspired by belief propagation. These advances in graph representation learning have led to new state-of-the-art results in numerous domains, including chemical synthesis, 3D vision, recommender systems, question answering, and social network analysis. This book provides a synthesis and overview of graph representation learning. It begins with a discussion of the goals of graph representation learning as well as key methodological foundations in graph theory and network analysis. Following this, the book introduces and reviews methods for learning node embeddings, including random-walk-based methods and applications to knowledge graphs. It then provides a technical synthesis and introduction to the highly successful graph neural network (GNN) formalism, which has become a dominant and fast-growing paradigm for deep learning with graph data. The book concludes with a synthesis of recent advancements in deep generative models for graphs—a nascent but quickly growing subset of graph representation learning.

Turbo-like Codes

Download Turbo-like Codes PDF Online Free

Author :
Release : 2010-10-19
Genre : Technology & Engineering
Kind :
Book Rating : 236/5 ( reviews)

Turbo-like Codes - read free eBook in online reader or directly download on the web page. Select files or add your book in reader. Download and read online ebook Turbo-like Codes write by Aliazam Abbasfar. This book was released on 2010-10-19. Turbo-like Codes available in PDF, EPUB and Kindle. This book introduces turbo error correcting concept in a simple language, including a general theory and the algorithms for decoding turbo-like code. It presents a unified framework for the design and analysis of turbo codes and LDPC codes and their decoding algorithms. A major focus is on high speed turbo decoding, which targets applications with data rates of several hundred million bits per second (Mbps).