Data Orchestration in Deep Learning Accelerators

Download Data Orchestration in Deep Learning Accelerators PDF Online Free

Author :
Release : 2022-05-31
Genre : Technology & Engineering
Kind :
Book Rating : 676/5 ( reviews)

Data Orchestration in Deep Learning Accelerators - read free eBook in online reader or directly download on the web page. Select files or add your book in reader. Download and read online ebook Data Orchestration in Deep Learning Accelerators write by Tushar Krishna. This book was released on 2022-05-31. Data Orchestration in Deep Learning Accelerators available in PDF, EPUB and Kindle. This Synthesis Lecture focuses on techniques for efficient data orchestration within DNN accelerators. The End of Moore's Law, coupled with the increasing growth in deep learning and other AI applications has led to the emergence of custom Deep Neural Network (DNN) accelerators for energy-efficient inference on edge devices. Modern DNNs have millions of hyper parameters and involve billions of computations; this necessitates extensive data movement from memory to on-chip processing engines. It is well known that the cost of data movement today surpasses the cost of the actual computation; therefore, DNN accelerators require careful orchestration of data across on-chip compute, network, and memory elements to minimize the number of accesses to external DRAM. The book covers DNN dataflows, data reuse, buffer hierarchies, networks-on-chip, and automated design-space exploration. It concludes with data orchestration challenges with compressed and sparse DNNs and future trends. The target audience is students, engineers, and researchers interested in designing high-performance and low-energy accelerators for DNN inference.

Deep Learning Systems

Download Deep Learning Systems PDF Online Free

Author :
Release : 2022-05-31
Genre : Technology & Engineering
Kind :
Book Rating : 692/5 ( reviews)

Deep Learning Systems - read free eBook in online reader or directly download on the web page. Select files or add your book in reader. Download and read online ebook Deep Learning Systems write by Andres Rodriguez. This book was released on 2022-05-31. Deep Learning Systems available in PDF, EPUB and Kindle. This book describes deep learning systems: the algorithms, compilers, and processor components to efficiently train and deploy deep learning models for commercial applications. The exponential growth in computational power is slowing at a time when the amount of compute consumed by state-of-the-art deep learning (DL) workloads is rapidly growing. Model size, serving latency, and power constraints are a significant challenge in the deployment of DL models for many applications. Therefore, it is imperative to codesign algorithms, compilers, and hardware to accelerate advances in this field with holistic system-level and algorithm solutions that improve performance, power, and efficiency. Advancing DL systems generally involves three types of engineers: (1) data scientists that utilize and develop DL algorithms in partnership with domain experts, such as medical, economic, or climate scientists; (2) hardware designers that develop specialized hardware to accelerate the components in the DL models; and (3) performance and compiler engineers that optimize software to run more efficiently on a given hardware. Hardware engineers should be aware of the characteristics and components of production and academic models likely to be adopted by industry to guide design decisions impacting future hardware. Data scientists should be aware of deployment platform constraints when designing models. Performance engineers should support optimizations across diverse models, libraries, and hardware targets. The purpose of this book is to provide a solid understanding of (1) the design, training, and applications of DL algorithms in industry; (2) the compiler techniques to map deep learning code to hardware targets; and (3) the critical hardware features that accelerate DL systems. This book aims to facilitate co-innovation for the advancement of DL systems. It is written for engineers working in one or more of these areas who seek to understand the entire system stack in order to better collaborate with engineers working in other parts of the system stack. The book details advancements and adoption of DL models in industry, explains the training and deployment process, describes the essential hardware architectural features needed for today's and future models, and details advances in DL compilers to efficiently execute algorithms across various hardware targets. Unique in this book is the holistic exposition of the entire DL system stack, the emphasis on commercial applications, and the practical techniques to design models and accelerate their performance. The author is fortunate to work with hardware, software, data scientist, and research teams across many high-technology companies with hyperscale data centers. These companies employ many of the examples and methods provided throughout the book.

Algorithm-accelerator Co-design for High-performance and Secure Deep Learning

Download Algorithm-accelerator Co-design for High-performance and Secure Deep Learning PDF Online Free

Author :
Release : 2022
Genre :
Kind :
Book Rating : /5 ( reviews)

Algorithm-accelerator Co-design for High-performance and Secure Deep Learning - read free eBook in online reader or directly download on the web page. Select files or add your book in reader. Download and read online ebook Algorithm-accelerator Co-design for High-performance and Secure Deep Learning write by Weizhe Hua. This book was released on 2022. Algorithm-accelerator Co-design for High-performance and Secure Deep Learning available in PDF, EPUB and Kindle. Deep learning has emerged as a new engine for many of today's artificial intelligence/machine learning systems, leading to several recent breakthroughs in vision and natural language processing tasks.However, as we move into the era of deep learning with billions and even trillions of parameters, meeting the computational and memory requirements to train and serve state-of-the-art models has become extremely challenging. Optimizing the computational cost and memory footprint of deep learning models for better system performance is critical to the widespread deployment of deep learning. Moreover, a massive amount of sensitive and private user data is exposed to the deep learning system during the training or serving process. Therefore, it is essential to investigate potential vulnerabilities in existing deep learning hardware, and then design secure deep learning systems that provide strong privacy guarantees for user data and the models that learn from the data. In this dissertation, we propose to co-design the deep learning algorithms and hardware architectural techniques to improve both the performance and security/privacy of deep learning systems. On high-performance deep learning, we first introduce channel gating neural network (CGNet), which exploits the dynamic sparsity of specific inputs to reduce computation of convolutional neural networks. We also co-develop an ASIC accelerator for CGNet that can turn theoretical FLOP reduction into wall-clock speedup. Secondly, we present Fast Linear Attention with a Single Head (FLASH), a state-of-the-art language model specifically designed for Google's TPU that can achieve transformer-level quality with linear complexity with respect to the sequence length. Through our empirical studies on masked language modeling, auto-regressive language modeling, and fine-tuning for question answering, FLASH achieves at least similar if not better quality compared to the augmented transformer, while being significantly faster (e.g., up to 12 times faster). On the security of deep learning, we study the side-channel vulnerabilities of existing deep learning accelerators. We then introduce a secure accelerator architecture for privacy-preserving deep learning, named GuardNN. GuardNN provides a trusted execution environment (TEE) with specialized protection for deep learning, and achieves a small trusted computing base and low protection overhead at the same time. The FPGA prototype of GuardNN achieves a maximum performance overhead of 2.4\% across four different modern DNNs models for ImageNet.

Exploiting Data Characteristics in The Design of Accelerators for Deep Learning

Download Exploiting Data Characteristics in The Design of Accelerators for Deep Learning PDF Online Free

Author :
Release : 2019
Genre :
Kind :
Book Rating : /5 ( reviews)

Exploiting Data Characteristics in The Design of Accelerators for Deep Learning - read free eBook in online reader or directly download on the web page. Select files or add your book in reader. Download and read online ebook Exploiting Data Characteristics in The Design of Accelerators for Deep Learning write by Patrick H. Judd. This book was released on 2019. Exploiting Data Characteristics in The Design of Accelerators for Deep Learning available in PDF, EPUB and Kindle. The recent "Cambrian explosion" of Deep Learning (DL) algorithms in concert with the end of Moore's Law and Dennard Scaling has spurred interest in the design of custom hardware accelerators for DL algorithms. While DL has progressed quickly thanks in part to the abundance of efficient parallel computation provided by General Purpose Graphics Processing Units, newer DL algorithms demand even higher levels of compute density and efficiency. Furthermore, applications of DL in the mobile and embedded domains demand the energy efficiency of special purpose hardware. DL algorithms are dominated by large matrix-vector product computations, making them ideal targets for wide Single Instruction Multiple Data architectures. For the most part, efficiently mapping the structure of these computations to hardware is straightforward. Building on such designs, this thesis examines the data characteristics of these computations and proposes hardware modifications to exploit them for performance and energy efficiency. Specifically, this thesis examines the sparsity and precision requirements of Deep Convolutional Neural Networks, which comprise multiple layers of matrix-vector product computations. We propose a profiling method to find per layer reduced precision configurations while maintaining high classification accuracy. Following this, we propose three accelerator designs that build on top of the state-of-the-art DaDianNao accelerator. 1) Proteus exploits the reduced precision profiles by adding a light weight memory compression layer, saving energy in memory access and communication, and enabling larger networks in a fixed memory budget. 2) Cnvlutin exploits the presence of zero, and near zero, values in the inter-layer data by applying sparse compression to the data stream while maintain efficient utilization of the wide memory and compute structure of the SIMD accelerator. 3) Stripes exploits the reduced precision profiles for performance by processing data bit-serially, compensating for serial latency by exploiting the abundant parallelism in the convolution operation. All three designs exploit approximation, in terms of reduced precision and computation skipping to improve energy efficiency and/or performance while maintaining high classification accuracy. By approximating more aggressively, these designs can also dynamically trade-off accuracy for further improvements in performance and energy.

Deep Learning

Download Deep Learning PDF Online Free

Author :
Release : 2017-07-28
Genre : Computers
Kind :
Book Rating : 211/5 ( reviews)

Deep Learning - read free eBook in online reader or directly download on the web page. Select files or add your book in reader. Download and read online ebook Deep Learning write by Josh Patterson. This book was released on 2017-07-28. Deep Learning available in PDF, EPUB and Kindle. Although interest in machine learning has reached a high point, lofty expectations often scuttle projects before they get very far. How can machine learning—especially deep neural networks—make a real difference in your organization? This hands-on guide not only provides the most practical information available on the subject, but also helps you get started building efficient deep learning networks. Authors Adam Gibson and Josh Patterson provide theory on deep learning before introducing their open-source Deeplearning4j (DL4J) library for developing production-class workflows. Through real-world examples, you’ll learn methods and strategies for training deep network architectures and running deep learning workflows on Spark and Hadoop with DL4J. Dive into machine learning concepts in general, as well as deep learning in particular Understand how deep networks evolved from neural network fundamentals Explore the major deep network architectures, including Convolutional and Recurrent Learn how to map specific deep networks to the right problem Walk through the fundamentals of tuning general neural networks and specific deep network architectures Use vectorization techniques for different data types with DataVec, DL4J’s workflow tool Learn how to use DL4J natively on Spark and Hadoop