Integrated Fabrication of Micro- and Nano-scale Structures for Silicon Devices Enabled by Metal-assisted Chemical Etch

Download Integrated Fabrication of Micro- and Nano-scale Structures for Silicon Devices Enabled by Metal-assisted Chemical Etch PDF Online Free

Author :
Release : 2021
Genre :
Kind :
Book Rating : /5 ( reviews)

Integrated Fabrication of Micro- and Nano-scale Structures for Silicon Devices Enabled by Metal-assisted Chemical Etch - read free eBook in online reader or directly download on the web page. Select files or add your book in reader. Download and read online ebook Integrated Fabrication of Micro- and Nano-scale Structures for Silicon Devices Enabled by Metal-assisted Chemical Etch write by Raul Marcel Lema Galindo. This book was released on 2021. Integrated Fabrication of Micro- and Nano-scale Structures for Silicon Devices Enabled by Metal-assisted Chemical Etch available in PDF, EPUB and Kindle. Silicon device manufacturing, at both the micro and nanoscales, is largely performed using plasma etching techniques such as Reactive Ion Etching. Deep Reactive Ion Etching (DRIE) can be used to create high-aspect ratio nanostructures in silicon. The DRIE process suffers from low throughput, only one wafer can be processed at a time; high cost, the necessary tools and facilities for implementation are expensive; and surface defects such as sidewall taper and scalloping as a consequence of the cycling process required for high-aspect-ratio manufacturing. A potential solution to these issues consists of implementing wet-etching techniques, which do not require expensive equipment and can be implemented at a batch scale. Metal Assisted Chemical Etch is a wet-etch process that uses a metal catalyst to mediate silicon oxidation and removal in a diffusion-based process. This process has been demonstrated to work for both micro and nanoscale feature manufacturing on silicon substrates. To date, however, a single study aimed at identifying experimental conditions for successful multi-scale (integrated micro- and nanoscale) manufacturing is lacking in the literature. This mixed micro-nanoscale etching process (IMN-MACE) can enable a wide variety of applications including, for example, development of point-of-care medical diagnostic devices which rely on micro- and nano-fluidic sample processing, a growing field in the area of preventive medicine. This work developed multi-scale MACE by a systematic experimental exploration of the process space. A total of 54 experiments were performed to study the effects of the following process parameters: (i) surface silicon dioxide, (ii) metal catalyst stack, (iii) etchant solution concentration, and (iv) pre-etch sample preparation. Of these 54 experiments, 18 experiments were based on exploring nanopatterning of 100nm pillars, and the remaining 36 explored the fabrication of micropillars with a diameter between 10μm and 50μm in 5μm increments. It was determined that a single catalyst stack consisting of ~3nm Ag underneath a ~15nm Au metal layer can be used to etch high quality features at both the micro and nanoscales on a silicon substrate pre-treated with hydrogen fluoride to remove the native oxide layer from the surface. Future steps for micro-nano scale integration were also proposed

Micro- and Nano-Fabrication by Metal Assisted Chemical Etching

Download Micro- and Nano-Fabrication by Metal Assisted Chemical Etching PDF Online Free

Author :
Release : 2021-01-13
Genre : Technology & Engineering
Kind :
Book Rating : 45X/5 ( reviews)

Micro- and Nano-Fabrication by Metal Assisted Chemical Etching - read free eBook in online reader or directly download on the web page. Select files or add your book in reader. Download and read online ebook Micro- and Nano-Fabrication by Metal Assisted Chemical Etching write by Lucia Romano. This book was released on 2021-01-13. Micro- and Nano-Fabrication by Metal Assisted Chemical Etching available in PDF, EPUB and Kindle. Metal-assisted chemical etching (MacEtch) has recently emerged as a new etching technique capable of fabricating high aspect ratio nano- and microstructures in a few semiconductors substrates—Si, Ge, poly-Si, GaAs, and SiC—and using different catalysts—Ag, Au, Pt, Pd, Cu, Ni, and Rh. Several shapes have been demonstrated with a high anisotropy and feature size in the nanoscale—nanoporous films, nanowires, 3D objects, and trenches, which are useful components of photonic devices, microfluidic devices, bio-medical devices, batteries, Vias, MEMS, X-ray optics, etc. With no limitations of large-areas and low-cost processing, MacEtch can open up new opportunities for several applications where high precision nano- and microfabrication is required. This can make semiconductor manufacturing more accessible to researchers in various fields, and accelerate innovation in electronics, bio-medical engineering, energy, and photonics. Accordingly, this Special Issue seeks to showcase research papers, short communications, and review articles that focus on novel methodological developments in MacEtch, and its use for various applications.

Integrated Silicon-Metal Systems at the Nanoscale

Download Integrated Silicon-Metal Systems at the Nanoscale PDF Online Free

Author :
Release : 2023-04-12
Genre : Technology & Engineering
Kind :
Book Rating : 74X/5 ( reviews)

Integrated Silicon-Metal Systems at the Nanoscale - read free eBook in online reader or directly download on the web page. Select files or add your book in reader. Download and read online ebook Integrated Silicon-Metal Systems at the Nanoscale write by Munir H. Nayfeh. This book was released on 2023-04-12. Integrated Silicon-Metal Systems at the Nanoscale available in PDF, EPUB and Kindle. Integrated Silicon-Metal Systems at the Nanoscale: Applications in Photonics, Quantum Computing, Networking, and Internet is a comprehensive guide to the interaction, materials and functional integration at the nanoscale of the silicon-metal binary system and a variety of emerging and next-generation advanced device applications, from energy and electronics, to sensing, quantum computing and quantum internet networks. The book guides the readers through advanced techniques and etching processes, combining underlying principles, materials science, design, and operation of metal-Si nanodevices. Each chapter focuses on a specific use of integrated metal-silicon nanostructures, including storage and resistive next-generation nano memory and transistors, photo and molecular sensing, harvest and storage device electrodes, phosphor light converters, and hydrogen fuel cells, as well as future application areas, such as spin transistors, quantum computing, hybrid quantum devices, and quantum engineering, networking, and internet. Provides detailed coverage of materials, design and operation of metal-Si nanodevices Offers a step-by-step approach, supported by principles, methods, illustrations and equations Explores a range of cutting-edge emerging applications across electronics, sensing and quantum computing

Fabrication of Silicon Nanowires with Controlled Nano-scale Shapes Using Wet Anisotropic Etching

Download Fabrication of Silicon Nanowires with Controlled Nano-scale Shapes Using Wet Anisotropic Etching PDF Online Free

Author :
Release : 2015
Genre :
Kind :
Book Rating : /5 ( reviews)

Fabrication of Silicon Nanowires with Controlled Nano-scale Shapes Using Wet Anisotropic Etching - read free eBook in online reader or directly download on the web page. Select files or add your book in reader. Download and read online ebook Fabrication of Silicon Nanowires with Controlled Nano-scale Shapes Using Wet Anisotropic Etching write by Bailey Anderson Yin. This book was released on 2015. Fabrication of Silicon Nanowires with Controlled Nano-scale Shapes Using Wet Anisotropic Etching available in PDF, EPUB and Kindle. Silicon nanowires can enable important applications in energy and healthcare such as biochemical sensors, thermoelectric devices, and ultra-capacitors. In the energy sector, for example, as the need for more efficient energy storage continues to grow for enabling applications such as electric vehicles, high energy storage density capacitors are being explored as a potential replacement to traditional batteries that lack fast charge/discharge rates as well as have shorter life cycles. Silicon nanowire based ultra-capacitors offer increased energy storage density by increasing the surface area per unit projected area of the electrode, thereby allowing more surface “charge” to reside. The motivation behind this dissertation is the study of low-cost techniques for fabrication of high aspect ratio silicon nanowires with controlled geometry with an exemplar application in ultra-capacitors. Controlled transfer of high aspect ratio, nano-scale features into functional device layers requires anisotropic etch techniques. Dry reactive ion etch techniques are commonly used since most solution-based wet etch processes lack anisotropic pattern transfer capability. However, in silicon, anisotropic wet etch processes are available for the fabrication of nano-scale features, but have some constraints in the range of geometry of patterns that they can address. While this lack of geometric and material versatility precludes the use of these processes in applications like integrated circuits, they can be potentially realized for fabricating nanoscale pillars. This dissertation explores the geometric limitations of such inexpensive wet anisotropic etching processes and develops additional methods and geometries for fabrication of controlled nano-scale, high aspect ratio features. Jet and Flash Imprint Lithography (J-FILTM) has been used as the preferred pre-etch patterning process as it enables patterning of sub-50 nm high density features with versatile geometries over large areas. Exemplary anisotropic wet etch processes studied include Crystalline Orientation Dependent Etch (CODE) using potassium hydroxide (KOH) etching of silicon and Metal Assisted Chemical Etching (MACE) using gold as a catalyst to etch silicon. Experiments with CODE indicate that the geometric limitations of the etch process prevent the fabrication of high aspect ratio nanowires without adding a prohibitive number of steps to protect the pillar geometry. On the other hand, MACE offers a relatively simple process for fabricating high aspect ratio pillars with unique cross sections, and has thus been pursued to fabricate fully functional electrostatic capacitors featuring both circular and diamond-shaped nano-pillar electrodes. The capacitance of the diamond-shaped nano-pillar capacitor has been shown to be ~77.9% larger than that of the circular cross section due to the increase in surface area per unit projected area. This increase in capacitance approximately matches the increase calculated using analytical models. Thus, this dissertation provides a framework for the ability to create unique sharp cornered nanowires that can be explored further for a wider variety of cross sections.

Micro- and Nano-Fabrication by Metal Assisted Chemical Etching

Download Micro- and Nano-Fabrication by Metal Assisted Chemical Etching PDF Online Free

Author :
Release : 2021
Genre :
Kind :
Book Rating : 464/5 ( reviews)

Micro- and Nano-Fabrication by Metal Assisted Chemical Etching - read free eBook in online reader or directly download on the web page. Select files or add your book in reader. Download and read online ebook Micro- and Nano-Fabrication by Metal Assisted Chemical Etching write by Lucia Romano. This book was released on 2021. Micro- and Nano-Fabrication by Metal Assisted Chemical Etching available in PDF, EPUB and Kindle. Metal-assisted chemical etching (MacEtch) has recently emerged as a new etching technique capable of fabricating high aspect ratio nano- and microstructures in a few semiconductors substrates--Si, Ge, poly-Si, GaAs, and SiC--and using different catalysts--Ag, Au, Pt, Pd, Cu, Ni, and Rh. Several shapes have been demonstrated with a high anisotropy and feature size in the nanoscale--nanoporous films, nanowires, 3D objects, and trenches, which are useful components of photonic devices, microfluidic devices, bio-medical devices, batteries, Vias, MEMS, X-ray optics, etc. With no limitations of large-areas and low-cost processing, MacEtch can open up new opportunities for several applications where high precision nano- and microfabrication is required. This can make semiconductor manufacturing more accessible to researchers in various fields, and accelerate innovation in electronics, bio-medical engineering, energy, and photonics. Accordingly, this Special Issue seeks to showcase research papers, short communications, and review articles that focus on novel methodological developments in MacEtch, and its use for various applications.