Introducing MLOps - read free eBook in online reader or directly download on the web page. Select files or add your book in reader. Download and read online ebook Introducing MLOps write by Mark Treveil. This book was released on 2020-11-30. Introducing MLOps available in PDF, EPUB and Kindle. More than half of the analytics and machine learning (ML) models created by organizations today never make it into production. Some of the challenges and barriers to operationalization are technical, but others are organizational. Either way, the bottom line is that models not in production can't provide business impact. This book introduces the key concepts of MLOps to help data scientists and application engineers not only operationalize ML models to drive real business change but also maintain and improve those models over time. Through lessons based on numerous MLOps applications around the world, nine experts in machine learning provide insights into the five steps of the model life cycle--Build, Preproduction, Deployment, Monitoring, and Governance--uncovering how robust MLOps processes can be infused throughout. This book helps you: Fulfill data science value by reducing friction throughout ML pipelines and workflows Refine ML models through retraining, periodic tuning, and complete remodeling to ensure long-term accuracy Design the MLOps life cycle to minimize organizational risks with models that are unbiased, fair, and explainable Operationalize ML models for pipeline deployment and for external business systems that are more complex and less standardized
Introducing MLOps
Introducing MLOps - read free eBook in online reader or directly download on the web page. Select files or add your book in reader. Download and read online ebook Introducing MLOps write by Mark Treveil. This book was released on 2020-11-30. Introducing MLOps available in PDF, EPUB and Kindle. More than half of the analytics and machine learning (ML) models created by organizations today never make it into production. Some of the challenges and barriers to operationalization are technical, but others are organizational. Either way, the bottom line is that models not in production can't provide business impact. This book introduces the key concepts of MLOps to help data scientists and application engineers not only operationalize ML models to drive real business change but also maintain and improve those models over time. Through lessons based on numerous MLOps applications around the world, nine experts in machine learning provide insights into the five steps of the model life cycle--Build, Preproduction, Deployment, Monitoring, and Governance--uncovering how robust MLOps processes can be infused throughout. This book helps you: Fulfill data science value by reducing friction throughout ML pipelines and workflows Refine ML models through retraining, periodic tuning, and complete remodeling to ensure long-term accuracy Design the MLOps life cycle to minimize organizational risks with models that are unbiased, fair, and explainable Operationalize ML models for pipeline deployment and for external business systems that are more complex and less standardized
Cracking the Data Science Interview
Cracking the Data Science Interview - read free eBook in online reader or directly download on the web page. Select files or add your book in reader. Download and read online ebook Cracking the Data Science Interview write by Leondra R. Gonzalez. This book was released on 2024-02-29. Cracking the Data Science Interview available in PDF, EPUB and Kindle. Rise above the competition and excel in your next interview with this one-stop guide to Python, SQL, version control, statistics, machine learning, and much more Key Features Acquire highly sought-after skills of the trade, including Python, SQL, statistics, and machine learning Gain the confidence to explain complex statistical, machine learning, and deep learning theory Extend your expertise beyond model development with version control, shell scripting, and model deployment fundamentals Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionThe data science job market is saturated with professionals of all backgrounds, including academics, researchers, bootcampers, and Massive Open Online Course (MOOC) graduates. This poses a challenge for companies seeking the best person to fill their roles. At the heart of this selection process is the data science interview, a crucial juncture that determines the best fit for both the candidate and the company. Cracking the Data Science Interview provides expert guidance on approaching the interview process with full preparation and confidence. Starting with an introduction to the modern data science landscape, you’ll find tips on job hunting, resume writing, and creating a top-notch portfolio. You’ll then advance to topics such as Python, SQL databases, Git, and productivity with shell scripting and Bash. Building on this foundation, you'll delve into the fundamentals of statistics, laying the groundwork for pre-modeling concepts, machine learning, deep learning, and generative AI. The book concludes by offering insights into how best to prepare for the intensive data science interview. By the end of this interview guide, you’ll have gained the confidence, business acumen, and technical skills required to distinguish yourself within this competitive landscape and land your next data science job.What you will learn Explore data science trends, job demands, and potential career paths Secure interviews with industry-standard resume and portfolio tips Practice data manipulation with Python and SQL Learn about supervised and unsupervised machine learning models Master deep learning components such as backpropagation and activation functions Enhance your productivity by implementing code versioning through Git Streamline workflows using shell scripting for increased efficiency Who this book is for Whether you're a seasoned professional who needs to brush up on technical skills or a beginner looking to enter the dynamic data science industry, this book is for you. To get the most out of this book, basic knowledge of Python, SQL, and statistics is necessary. However, anyone familiar with other analytical languages, such as R, will also find value in this resource as it helps you revisit critical data science concepts like SQL, Git, statistics, and deep learning, guiding you to crack through data science interviews.
Driving Digital Transformation through Data and AI
Driving Digital Transformation through Data and AI - read free eBook in online reader or directly download on the web page. Select files or add your book in reader. Download and read online ebook Driving Digital Transformation through Data and AI write by Alexander Borek. This book was released on 2020-11-03. Driving Digital Transformation through Data and AI available in PDF, EPUB and Kindle. Leading tech companies such as Netflix, Amazon and Uber use data science and machine learning at scale in their core business processes, whereas most traditional companies struggle to expand their machine learning projects beyond a small pilot scope. This book enables organizations to truly embrace the benefits of digital transformation by anchoring data and AI products at the core of their business. It provides executives with the essential tools and concepts to establish a data and AI portfolio strategy as well as the organizational setup and agile processes that are required to deliver machine learning products at scale. Key consideration is given to advancing the data architecture and governance, balancing stakeholder needs and breaking organizational silos through new ways of working. Each chapter includes templates, common pitfalls and global case studies covering industries such as insurance, fashion, consumer goods, finance, manufacturing and automotive. Covering a holistic perspective on strategy, technology, product and company culture, Driving Digital Transformation through Data and AI guides the organizational transformation required to get ahead in the age of AI.
Software Architecture
Software Architecture - read free eBook in online reader or directly download on the web page. Select files or add your book in reader. Download and read online ebook Software Architecture write by Matthias Galster. This book was released on . Software Architecture available in PDF, EPUB and Kindle.