Learning for Cross-layer Resource Allocaton in the Framework of Cognitive Wireless Networks

Download Learning for Cross-layer Resource Allocaton in the Framework of Cognitive Wireless Networks PDF Online Free

Author :
Release : 2016
Genre : Machine learning
Kind :
Book Rating : /5 ( reviews)

Learning for Cross-layer Resource Allocaton in the Framework of Cognitive Wireless Networks - read free eBook in online reader or directly download on the web page. Select files or add your book in reader. Download and read online ebook Learning for Cross-layer Resource Allocaton in the Framework of Cognitive Wireless Networks write by Wenbo Wang. This book was released on 2016. Learning for Cross-layer Resource Allocaton in the Framework of Cognitive Wireless Networks available in PDF, EPUB and Kindle. "The framework of cognitive wireless networks is expected to endow wireless devices with a cognition-intelligence ability with which they can efficiently learn and respond to the dynamic wireless environment. In this dissertation, we focus on the problem of developing cognitive network control mechanisms without knowing in advance an accurate network model. We study a series of cross-layer resource allocation problems in cognitive wireless networks. Based on model-free learning, optimization and game theory, we propose a framework of self-organized, adaptive strategy learning for wireless devices to (implicitly) build the understanding of the network dynamics through trial-and-error. The work of this dissertation is divided into three parts. In the first part, we investigate a distributed, single-agent decision-making problem for real-time video streaming over a time-varying wireless channel between a single pair of transmitter and receiver. By modeling the joint source-channel resource allocation process for video streaming as a constrained Markov decision process, we propose a reinforcement learning scheme to search for the optimal transmission policy without the need to know in advance the details of network dynamics. In the second part of this work, we extend our study from the single-agent to a multi-agent decision-making scenario, and study the energy-efficient power allocation problems in a two-tier, underlay heterogeneous network and in a self-sustainable green network. For the heterogeneous network, we propose a stochastic learning algorithm based on repeated games to allow individual macro- or femto-users to find a Stackelberg equilibrium without flooding the network with local action information. For the self-sustainable green network, we propose a combinatorial auction mechanism that allows mobile stations to adaptively choose the optimal base station and sub-carrier group for transmission only from local payoff and transmission strategy information. In the third part of this work, we study a cross-layer routing problem in an interweaved Cognitive Radio Network (CRN), where an accurate network model is not available and the secondary users that are distributed within the CRN only have access to local action/utility information. In order to develop a spectrum-aware routing mechanism that is robust against potential insider attackers, we model the uncoordinated interaction between CRN nodes in the dynamic wireless environment as a stochastic game. Through decomposition of the stochastic routing game, we propose two stochastic learning algorithm based on a group of repeated stage games for the secondary users to learn the best-response strategies without the need of information flooding."--Abstract.

Cross-Layer Resource Allocation in Cognitive Radio Networks: Models, Algorithms, and Applications

Download Cross-Layer Resource Allocation in Cognitive Radio Networks: Models, Algorithms, and Applications PDF Online Free

Author :
Release : 2017-04-30
Genre : Computers
Kind :
Book Rating : 988/5 ( reviews)

Cross-Layer Resource Allocation in Cognitive Radio Networks: Models, Algorithms, and Applications - read free eBook in online reader or directly download on the web page. Select files or add your book in reader. Download and read online ebook Cross-Layer Resource Allocation in Cognitive Radio Networks: Models, Algorithms, and Applications write by Hang Qin. This book was released on 2017-04-30. Cross-Layer Resource Allocation in Cognitive Radio Networks: Models, Algorithms, and Applications available in PDF, EPUB and Kindle. This book is about cognitive radio (CR), a revolution in radio technology and an enabling technology for dynamic spectrum access. Due to the unique characteristics of the wireless networks, it is essential to address the approach of multiple layers (e.g., physical, link, and network) to maximize the network performance. The formulation of this cross-layer problem is usually complicated and challenging, while wireless resource allocation is a vital way to handle the race condition of the limited wireless resources. However, given the intrinsic characteristics of cognitive radio networks (CRN), none of the existing analytical approach could be a direct fit. Therefore, innovative theoretical results, along with the corresponding mathematical techniques, are necessary. In this book, we aim to develop some novel algorithmic design and optimization techniques that provide optimal or near-optimal solutions. Although cross-layer design has been introduced to CRN for many years, there are rarely any books for researchers, engineers, and students, from the engineering perspective. From one hand, most of the existing books primarily focus on the mathematical and economic aspects, which are considerably different from the engineering. On the other hand, all of the books mainly aim to system optimization or control techniques, while the cross-layer algorithm design in the distributed environment is usually ignored. As the result, there is an urgent demand for a reference source, which can provide complete information on how to fully adopt cross-layer resource allocation to the CRN. In this regard, this book not only focuses on the description of the main aspects of cross-layer resource allocation over CRN, but also provides a review of the application solutions. In a nutshell, it provides a specific treatment of cross-layer design in CRN. The topics range from the basic concepts of cross-layer resource allocation, to the state-of-the-art analyses, modelings, and optimizations for CRN.

Channel Aware Scheduling and Resource Allocation with Cross Layer Optimization in Wireless Networks

Download Channel Aware Scheduling and Resource Allocation with Cross Layer Optimization in Wireless Networks PDF Online Free

Author :
Release : 2013
Genre :
Kind :
Book Rating : 414/5 ( reviews)

Channel Aware Scheduling and Resource Allocation with Cross Layer Optimization in Wireless Networks - read free eBook in online reader or directly download on the web page. Select files or add your book in reader. Download and read online ebook Channel Aware Scheduling and Resource Allocation with Cross Layer Optimization in Wireless Networks write by Sheu-Sheu Tan. This book was released on 2013. Channel Aware Scheduling and Resource Allocation with Cross Layer Optimization in Wireless Networks available in PDF, EPUB and Kindle. We develop channel aware scheduling and resource allocation schemes with cross-layer optimization for several problems in multiuser wireless networks. We consider problems of distributed opportunistic scheduling, where multiple users contend to access the same set of channels. Instead of scheduling users to the earliest available idle channels, we also take the instantaneous channel quality into consideration and schedule the users only when the channel quality is sufficiently high. This can lead to significant gains in throughput compared to system where PHY and MAC layers are designed separately and the wireless fading channels are abstracted as time invariant, fixed rate channels for scheduling purposes. We first consider opportunistic spectrum access in a cognitive radio network, where a secondary user (SU) share the spectrum opportunistically with incumbent primary users (PUs). Similar to earlier works on distributed opportunistic scheduling (DOS), we maximize the throughput of SU by formulating the channel access problem as a maximum rate-of-return problem in the optimal stopping theory framework. We show that the optimal channel access strategy is a pure threshold policy, namely the SU decides to use or skip transmission opportunities by comparing the channel qualities to a fixed threshold. We further increase the spectrum utilization by interleaving SU's packets with periodic sensing to detect PU's return. We jointly optimize the rate threshold and the packet transmission time to maximize the average throughput of SU, while limiting interference to PU. Next, we develop channel-aware opportunistic spectrum access strategies in a more general cognitive radio network with multiple SUs. Here, we additionally take into account the collisions and complex interaction between SUs and sharing of resources between them. We derive strategies for both cooperative settings where SUs maximize their sum total of throughputs, as well as non-cooperative game theoretic settings, where each SU tries to maximize its own throughput. We show that the optimal schemes for both scenarios are pure threshold policies. In the non-cooperative case, we establish the existence of Nash equilibrium and develop best response strategies that can converge to equilibria, with SUs relying only on their local observations. We study the trade-off between maximal throughput in the cooperative setting and fairness in the non-cooperative setting, and schemes based on utility functions and pricing that mitigate this tradeoff. In addition to maximizing throughput and fair sharing of resources, it is important to consider network/scheduling delays for QoS performance of delay-sensitive applications. We study DOS under both network-wide and user-specific average delay constraints. We take a stochastic Lagrangian approach and characterize the corresponding optimal scheduling policies accordingly, and show that they have a pure threshold structure. Next, we consider the use of different types of channel quality information, i.e., channel state information (CSI) and channel distribution information (CDI) in the opportunistic scheduling design for MIMO ad hoc networks. CSI is highly dynamic in nature and provides time diversity in the wireless channel, but is difficult to track. CDI offers temporal stability, but is incapable of capturing the instantaneous channel conditions. We design a new class of cross-layer opportunistic channel access scheduling framework for MIMO networks where CDI is used in the network context to group the simultaneous transmission links for spatial channel access and CSI is used in the link context to decide when and which link group should transmit based on a pre designed threshold. We thereby reap the benefits of both the temporal stability of CDI and the time diversity of CSI. Finally, we consider a novel application of cross layer optimization for communication of progressive coded images over OFDM wireless fading channels. We first consider adaptive modulation based on the instantaneous channel state information. An algorithm is proposed to allocate power and constellation size at each subchannel by maximizing the throughput. We next consider both the variance and the average of the throughput when deciding the constellation size for adaptive modulation. Simulation results confirm that cross-layer optimization with adaptive modulation enhances system performance.

Cognitive Networks

Download Cognitive Networks PDF Online Free

Author :
Release : 2014-12-09
Genre : Technology & Engineering
Kind :
Book Rating : 990/5 ( reviews)

Cognitive Networks - read free eBook in online reader or directly download on the web page. Select files or add your book in reader. Download and read online ebook Cognitive Networks write by Jaime Lloret Mauri. This book was released on 2014-12-09. Cognitive Networks available in PDF, EPUB and Kindle. A cognitive network makes use of the information gathered from the network in order to sense the environment, plan actions according to the input, and make appropriate decisions using a reasoning engine. The ability of cognitive networks to learn from the past and use that knowledge to improve future decisions makes them a key area of interest for anyone whose work involves wireless networks and communications. Cognitive Networks: Applications and Deployments examines recent developments in cognitive networks from the perspective of cutting-edge applications and deployments. Presenting the contributions of internationally renowned experts, it supplies complete and balanced treatment of the fundamentals of both cognitive radio communications and cognitive networks—together with implementation details. The book includes case studies and detailed descriptions of cognitive radio platforms and testbeds that demonstrate how to build real-world cognitive radio systems and network architectures. It begins with an introduction to efficient spectrum management and presents a survey on joint routing and dynamic spectrum access in cognitive radio networks. Next, it examines radio spectrum sensing and network coding and design. It explores intelligent routing in graded cognitive networks and presents an energy-efficient routing protocol for cognitive radio ad hoc networks. The book concludes by considering dynamic radio spectrum access and examining vehicular cognitive networks and applications. Presenting the latest standards and spectrum policy developments, the book’s strong practical orientation provides you with the understanding you will need to participate in the development of compliant cognitive systems.

UTILITY-BASED RESOURCE ALLOCATION STRATEGIES AND PROTOCOL DESIGN FOR SPECTRUM-ADAPTIVE WIRELESS NETWORKS.

Download UTILITY-BASED RESOURCE ALLOCATION STRATEGIES AND PROTOCOL DESIGN FOR SPECTRUM-ADAPTIVE WIRELESS NETWORKS. PDF Online Free

Author :
Release : 2009
Genre :
Kind :
Book Rating : /5 ( reviews)

UTILITY-BASED RESOURCE ALLOCATION STRATEGIES AND PROTOCOL DESIGN FOR SPECTRUM-ADAPTIVE WIRELESS NETWORKS. - read free eBook in online reader or directly download on the web page. Select files or add your book in reader. Download and read online ebook UTILITY-BASED RESOURCE ALLOCATION STRATEGIES AND PROTOCOL DESIGN FOR SPECTRUM-ADAPTIVE WIRELESS NETWORKS. write by . This book was released on 2009. UTILITY-BASED RESOURCE ALLOCATION STRATEGIES AND PROTOCOL DESIGN FOR SPECTRUM-ADAPTIVE WIRELESS NETWORKS. available in PDF, EPUB and Kindle. Resource allocation strategies, including power control, rate adaptation, and dynamic spectrum access, have been the keys to improving the performance of dynamic (mobile) wireless networks. In this dissertation, we propose several resource optimization schemes for various wireless network architectures, with the goal of maximizing the system throughput and/or minimizing the total energy consumption. These schemes are integrated into the design of distributed medium-access control (MAC) protocols. We propose a game theoretic power control scheme for single-channel ad-hoc networks, and design an efficient MAC protocol, called GMAC, that implements such a scheme in a distributed fashion. GMAC allows for multiple potential transmitters to contend for the channel through an admission phase that these transmitters to determine their appropriate transmission powers. Successful contenders proceed concurrently following the admission phase. We then study the operation of spectrum-agile (cognitive) radios in multi-channel, multi-hop wireless network setting. Two principal cases are considered: exclusive-occupancy and interference-based channel models. For the case of exclusive-occupancy channel models, we design a MAC protocol that exploits the "dual receive" capabilities of the radios to maximize the network throughput. We then propose a cross-layer framework for joint adaptive load/medium access controls. Under this framework, the traffic loads of individual node are adapted based on local MAC parameters. For the case of interference-based channel models, when system throughput is the primary performance metric, we apply "price-based" iterative water-filling (PIWF) algorithms for resource allocation. When energy consumption is the primary metric, we propose a selfish update algorithm and an incentive-based update algorithm for minimizing the power consumption while satisfying the rate and power mask requirements. These algorithms are implemented by having nodes repeatedly negotiate their best power/spectrum to reach a good Nash Equilibrium. An efficient multi-channel MAC protocol is proposed to facilitate the radio negotiation and convergence phase. Simulation results indicate that our proposed protocols achieve significant throughput/energy improvements over existing protocols.