Thermal Issues in Testing of Advanced Systems on Chip

Download Thermal Issues in Testing of Advanced Systems on Chip PDF Online Free

Author :
Release : 2015-09-23
Genre :
Kind :
Book Rating : 495/5 ( reviews)

Thermal Issues in Testing of Advanced Systems on Chip - read free eBook in online reader or directly download on the web page. Select files or add your book in reader. Download and read online ebook Thermal Issues in Testing of Advanced Systems on Chip write by Nima Aghaee Ghaleshahi. This book was released on 2015-09-23. Thermal Issues in Testing of Advanced Systems on Chip available in PDF, EPUB and Kindle. Many cutting-edge computer and electronic products are powered by advanced Systems-on-Chip (SoC). Advanced SoCs encompass superb performance together with large number of functions. This is achieved by efficient integration of huge number of transistors. Such very large scale integration is enabled by a core-based design paradigm as well as deep-submicron and 3D-stacked-IC technologies. These technologies are susceptible to reliability and testing complications caused by thermal issues. Three crucial thermal issues related to temperature variations, temperature gradients, and temperature cycling are addressed in this thesis. Existing test scheduling techniques rely on temperature simulations to generate schedules that meet thermal constraints such as overheating prevention. The difference between the simulated temperatures and the actual temperatures is called temperature error. This error, for past technologies, is negligible. However, advanced SoCs experience large errors due to large process variations. Such large errors have costly consequences, such as overheating, and must be taken care of. This thesis presents an adaptive approach to generate test schedules that handle such temperature errors. Advanced SoCs manufactured as 3D stacked ICs experience large temperature gradients. Temperature gradients accelerate certain early-life defect mechanisms. These mechanisms can be artificially accelerated using gradient-based, burn-in like, operations so that the defects are detected before shipping. Moreover, temperature gradients exacerbate some delay-related defects. In order to detect such defects, testing must be performed when appropriate temperature-gradients are enforced. A schedule-based technique that enforces the temperature-gradients for burn-in like operations is proposed in this thesis. This technique is further developed to support testing for delay-related defects while appropriate gradients are enforced. The last thermal issue addressed by this thesis is related to temperature cycling. Temperature cycling test procedures are usually applied to safety-critical applications to detect cycling-related early-life failures. Such failures affect advanced SoCs, particularly through-silicon-via structures in 3D-stacked-ICs. An efficient schedule-based cycling-test technique that combines cycling acceleration with testing is proposed in this thesis. The proposed technique fits into existing 3D testing procedures and does not require temperature chambers. Therefore, the overall cycling acceleration and testing cost can be drastically reduced. All the proposed techniques have been implemented and evaluated with extensive experiments based on ITC’02 benchmarks as well as a number of 3D stacked ICs. Experiments show that the proposed techniques work effectively and reduce the costs, in particular the costs related to addressing thermal issues and early-life failures. We have also developed a fast temperature simulation technique based on a closed-form solution for the temperature equations. Experiments demonstrate that the proposed simulation technique reduces the schedule generation time by more than half.

Studying Simulations with Distributed Cognition

Download Studying Simulations with Distributed Cognition PDF Online Free

Author :
Release : 2018-03-20
Genre :
Kind :
Book Rating : 489/5 ( reviews)

Studying Simulations with Distributed Cognition - read free eBook in online reader or directly download on the web page. Select files or add your book in reader. Download and read online ebook Studying Simulations with Distributed Cognition write by Jonas Rybing. This book was released on 2018-03-20. Studying Simulations with Distributed Cognition available in PDF, EPUB and Kindle. Simulations are frequently used techniques for training, performance assessment, and prediction of future outcomes. In this thesis, the term “human-centered simulation” is used to refer to any simulation in which humans and human cognition are integral to the simulation’s function and purpose (e.g., simulation-based training). A general problem for human-centered simulations is to capture the cognitive processes and activities of the target situation (i.e., the real world task) and recreate them accurately in the simulation. The prevalent view within the simulation research community is that cognition is internal, decontextualized computational processes of individuals. However, contemporary theories of cognition emphasize the importance of the external environment, use of tools, as well as social and cultural factors in cognitive practice. Consequently, there is a need for research on how such contemporary perspectives can be used to describe human-centered simulations, re-interpret theoretical constructs of such simulations, and direct how simulations should be modeled, designed, and evaluated. This thesis adopts distributed cognition as a framework for studying human-centered simulations. Training and assessment of emergency medical management in a Swedish context using the Emergo Train System (ETS) simulator was adopted as a case study. ETS simulations were studied and analyzed using the distributed cognition for teamwork (DiCoT) methodology with the goal of understanding, evaluating, and testing the validity of the ETS simulator. Moreover, to explore distributed cognition as a basis for simulator design, a digital re-design of ETS (DIGEMERGO) was developed based on the DiCoT analysis. The aim of the DIGEMERGO system was to retain core distributed cognitive features of ETS, to increase validity, outcome reliability, and to provide a digital platform for emergency medical studies. DIGEMERGO was evaluated in three separate studies; first, a usefulness, usability, and facevalidation study that involved subject-matter-experts; second, a comparative validation study using an expert-novice group comparison; and finally, a transfer of training study based on self-efficacy and management performance. Overall, the results showed that DIGEMERGO was perceived as a useful, immersive, and promising simulator – with mixed evidence for validity – that demonstrated increased general self-efficacy and management performance following simulation exercises. This thesis demonstrates that distributed cognition, using DiCoT, is a useful framework for understanding, designing and evaluating simulated environments. In addition, the thesis conceptualizes and re-interprets central constructs of human-centered simulation in terms of distributed cognition. In doing so, the thesis shows how distributed cognitive processes relate to validity, fidelity, functionality, and usefulness of human-centered simulations. This thesis thus provides a new understanding of human-centered simulations that is grounded in distributed cognition theory.

Applications of Partial Polymorphisms in (Fine-Grained) Complexity of Constraint Satisfaction Problems

Download Applications of Partial Polymorphisms in (Fine-Grained) Complexity of Constraint Satisfaction Problems PDF Online Free

Author :
Release : 2020-03-23
Genre :
Kind :
Book Rating : 982/5 ( reviews)

Applications of Partial Polymorphisms in (Fine-Grained) Complexity of Constraint Satisfaction Problems - read free eBook in online reader or directly download on the web page. Select files or add your book in reader. Download and read online ebook Applications of Partial Polymorphisms in (Fine-Grained) Complexity of Constraint Satisfaction Problems write by Biman Roy. This book was released on 2020-03-23. Applications of Partial Polymorphisms in (Fine-Grained) Complexity of Constraint Satisfaction Problems available in PDF, EPUB and Kindle. In this thesis we study the worst-case complexity ofconstraint satisfaction problems and some of its variants. We use methods from universal algebra: in particular, algebras of total functions and partial functions that are respectively known as clones and strong partial clones. The constraint satisfactionproblem parameterized by a set of relations ? (CSP(?)) is the following problem: given a set of variables restricted by a set of constraints based on the relations ?, is there an assignment to thevariables that satisfies all constraints? We refer to the set ? as aconstraint language. The inverse CSPproblem over ? (Inv-CSP(?)) asks the opposite: given a relation R, does there exist a CSP(?) instance with R as its set of models? When ? is a Boolean language, then we use the term SAT(?) instead of CSP(?) and Inv-SAT(?) instead of Inv-CSP(?). Fine-grained complexity is an approach in which we zoom inside a complexity class and classify theproblems in it based on their worst-case time complexities. We start by investigating the fine-grained complexity of NP-complete CSP(?) problems. An NP-complete CSP(?) problem is said to be easier than an NP-complete CSP(?) problem if the worst-case time complexity of CSP(?) is not higher thanthe worst-case time complexity of CSP(?). We first analyze the NP-complete SAT problems that are easier than monotone 1-in-3-SAT (which can be represented by SAT(R) for a certain relation R), and find out that there exists a continuum of such problems. For this, we use the connection between constraint languages and strong partial clones and exploit the fact that CSP(?) is easier than CSP(?) when the strong partial clone corresponding to ? contains the strong partial clone of ?. An NP-complete CSP(?) problem is said to be the easiest with respect to a variable domain D if it is easier than any other NP-complete CSP(?) problem of that domain. We show that for every finite domain there exists an easiest NP-complete problem for the ultraconservative CSP(?) problems. An ultraconservative CSP(?) is a special class of CSP problems where the constraint language containsall unary relations. We additionally show that no NP-complete CSP(?) problem can be solved insub-exponential time (i.e. in2^o(n) time where n is the number of variables) given that theexponentialtime hypothesisis true. Moving to classical complexity, we show that for any Boolean constraint language ?, Inv-SAT(?) is either in P or it is coNP-complete. This is a generalization of an earlier dichotomy result, which was only known to be true for ultraconservative constraint languages. We show that Inv-SAT(?) is coNP-complete if and only if the clone corresponding to ? contains essentially unary functions only. For arbitrary finite domains our results are not conclusive, but we manage to prove that theinversek-coloring problem is coNP-complete for each k>2. We exploit weak bases to prove many of theseresults. A weak base of a clone C is a constraint language that corresponds to the largest strong partia clone that contains C. It is known that for many decision problems X(?) that are parameterized bya constraint language ?(such as Inv-SAT), there are strong connections between the complexity of X(?) and weak bases. This fact can be exploited to achieve general complexity results. The Boolean domain is well-suited for this approach since we have a fairly good understanding of Boolean weak bases. In the final result of this thesis, we investigate the relationships between the weak bases in the Boolean domain based on their strong partial clones and completely classify them according to the setinclusion. To avoid a tedious case analysis, we introduce a technique that allows us to discard a largenumber of cases from further investigation.

Computational Complexity of some Optimization Problems in Planning

Download Computational Complexity of some Optimization Problems in Planning PDF Online Free

Author :
Release : 2017-05-17
Genre :
Kind :
Book Rating : 198/5 ( reviews)

Computational Complexity of some Optimization Problems in Planning - read free eBook in online reader or directly download on the web page. Select files or add your book in reader. Download and read online ebook Computational Complexity of some Optimization Problems in Planning write by Meysam Aghighi. This book was released on 2017-05-17. Computational Complexity of some Optimization Problems in Planning available in PDF, EPUB and Kindle. Automated planning is known to be computationally hard in the general case. Propositional planning is PSPACE-complete and first-order planning is undecidable. One method for analyzing the computational complexity of planning is to study restricted subsets of planning instances, with the aim of differentiating instances with varying complexity. We use this methodology for studying the computational complexity of planning. Finding new tractable (i.e. polynomial-time solvable) problems has been a particularly important goal for researchers in the area. The reason behind this is not only to differentiate between easy and hard planning instances, but also to use polynomial-time solvable instances in order to construct better heuristic functions and improve planners. We identify a new class of tractable cost-optimal planning instances by restricting the causal graph. We study the computational complexity of oversubscription planning (such as the net-benefit problem) under various restrictions and reveal strong connections with classical planning. Inspired by this, we present a method for compiling oversubscription planning problems into the ordinary plan existence problem. We further study the parameterized complexity of cost-optimal and net-benefit planning under the same restrictions and show that the choice of numeric domain for the action costs has a great impact on the parameterized complexity. We finally consider the parameterized complexity of certain problems related to partial-order planning. In some applications, less restricted plans than total-order plans are needed. Therefore, a partial-order plan is being used instead. When dealing with partial-order plans, one important question is how to achieve optimal partial order plans, i.e. having the highest degree of freedom according to some notion of flexibility. We study several optimization problems for partial-order plans, such as finding a minimum deordering or reordering, and finding the minimum parallel execution length.

Analysis, Design, and Optimization of Embedded Control Systems

Download Analysis, Design, and Optimization of Embedded Control Systems PDF Online Free

Author :
Release : 2016-02-18
Genre : Control systems
Kind :
Book Rating : 26X/5 ( reviews)

Analysis, Design, and Optimization of Embedded Control Systems - read free eBook in online reader or directly download on the web page. Select files or add your book in reader. Download and read online ebook Analysis, Design, and Optimization of Embedded Control Systems write by Amir Aminifar. This book was released on 2016-02-18. Analysis, Design, and Optimization of Embedded Control Systems available in PDF, EPUB and Kindle. Today, many embedded or cyber-physical systems, e.g., in the automotive domain, comprise several control applications, sharing the same platform. It is well known that such resource sharing leads to complex temporal behaviors that degrades the quality of control, and more importantly, may even jeopardize stability in the worst case, if not properly taken into account. In this thesis, we consider embedded control or cyber-physical systems, where several control applications share the same processing unit. The focus is on the control-scheduling co-design problem, where the controller and scheduling parameters are jointly optimized. The fundamental difference between control applications and traditional embedded applications motivates the need for novel methodologies for the design and optimization of embedded control systems. This thesis is one more step towards correct design and optimization of embedded control systems. Offline and online methodologies for embedded control systems are covered in this thesis. The importance of considering both the expected control performance and stability is discussed and a control-scheduling co-design methodology is proposed to optimize control performance while guaranteeing stability. Orthogonal to this, bandwidth-efficient stabilizing control servers are proposed, which support compositionality, isolation, and resource-efficiency in design and co-design. Finally, we extend the scope of the proposed approach to non-periodic control schemes and address the challenges in sharing the platform with self-triggered controllers. In addition to offline methodologies, a novel online scheduling policy to stabilize control applications is proposed.